
ELSEVIER Computational Statistics & Data Analysis 28 (1998) 257-270 

COMPUTATIONAL 
STATISTICS 

& DATA ANAffSIS 

Robust bivariate boxplots and 
multiple outlier detection 

Sergio Zani *, Marco Riani, Aldo Corbellini 

Istituto di Statistica, Universith di Parma, Via Kennedy 6, 43100 Parma, Italy 

Received 1 March 1997; received in revised form 1 February 1998; accepted 2 April 1998 

Abstract 

In this paper we suggest a simple way of constructing a bivariate boxplot based on convex hull 
peeling and B-spline smoothing. The proposed method shows some advantages with respect to that 
suggested by Goldberg and Iglewicz (1992). Our approach leads to defining a natural inner region 
which is completely nonparametric and smooth. Furthermore it retains the correlation in the observations 
and adapts to differing spread of the data in the different directions. The outer contour, which is based 
on a multiple of the distance of the inner region from the centre, is robust to the presence of clusters 
of outliers. We also show how the construction of a bivariate boxplot for each pair of variables can 
become a very useful tool for the detection of multivariate outliers. @ 1998 Elsevier Science B.V. 
All rights reserved. 
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1. Introduction 

The univariate boxplot is universally acknowledged as a very useful tool to sum- 
marize univariate data because it provides information concerning location, spread 
and skewness and also highlights potential outliers (Tukey, 1977). During the last 
ten years there have been some attempts to construct bivariate contours (Scott, 1985; 
Press et al., 1986; Becketti and Gould, 1987), but these approaches had serious short- 
comings. 

Goldberg and Iglewicz (1992) (from now on GI) suggested two main ways of 
constructing a bivariate boxplot called Relplot and Quelplot. The first is based on 
a robust elliptic plot. The second uses the so-called quels, which are four separate 
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quarter ellipses matched on their major and minor axes in order to ensure continuity 
and smoothness in the overall graph. 

In this paper we suggest an alternative way of constructing a bivariate boxplot 
which uses the instruments of  convex peeling and B-splines. 

The structure of  the paper is as follows: in Section 2 we describe our proposal 
for a bivariate boxplot. In Section 3 we compare our method with the existing ones, 
with special attention to the work of  GI. Section 4 is devoted to simulation results. 
We monitor first the probability of  an observation lying outside our outer bivariate 
contour under the hypothesis of  a bivariate normal distribution. Then we analyse the 
theoretical number of  observations left outside the outer contour in relation to the 
sample size. In Section 5 we apply our method to some well-known data sets con- 
raining bivariate outliers, in which traditional methods seem to fail to detect atypical 
observations. In Section 6 we claim that for p-dimensional data the construction of  
a bivariate boxplot for each pair of  variables can help to find an initial clean data set 
free from outliers, which can act as a starting point in the forward search techniques 
(Hadi, 1992; Atkinson, 1994; Riani and Zani, 1996; Atldnson and Riani, 1997) for 
the detection of  multivariate outliers. Final comments are presented in Section 7. 

2. Description of the method 

In order to construct a bivariate boxplot we must (a) specify an inner region, 
(b) define a robust centroid and (c) devise a method to construct the outer region. 
In this section we will examine these three steps in detail. 

Step 1: Definition of the inner region. The inner region (hinge) is the two- 
dimensional extension of  the interquartile range of the univariate boxplot. In one 
dimension we take the length of  the box which contains 50% of  the values. In two di- 
mensions we look for a similar region centered on a robust estimator of  location, 
containing a fixed percentage of  the data. A natural and completely nonparametric 
way of  finding a central region in R 2 is through the use of  the so-called convex hull 
peeling (Bebbington, 1978). Barnett (1976) suggested that "the most extreme group 
of  observations in a multivariate sample are those lying on the convex hull (with 
those on the convex hull of  the remaining sample, the second most extreme group, 
etc.)". The output of  the peeling is a series of  nested convex polygons (hulls). We 
call the (1 - 0t)%-hull the biggest hull containing not more than (1 - g)% of  the 
data. (The points on the boundary belong to the hull). Usually, even if the outermost 
hull assumes very different shapes and is influenced by outliers, the 50%-hull seems 
to capture the correlation of  the two variables. However, if  the sample size is small 
the 50%-hull might not be smooth. In order to overcome this problem we suggest to 
superimpose around the 50%-hull previously formed a B-spline curve. 1 This leads 
us to define the inner region as follows: 

l A B-spline is basically an interpolation cubic curve able to smooth a series of  n points given in 
any order. It uses a four-point control system for each interval of  the curve and fulfills the conditions 
that the first three derivatives are continuous and the distance of  the curve from the points is minimal 
(Ammeraal, 1992). 
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Fig. 1. Plot of the percentage of one-component families versus the percentage of infant population in 
the 341 municipalities of Emilia-Romagna (Italy) with most extreme, 90% and 50%-hulls. A B-spline 
curve has been superimposed on the 50%-hull and two straight lines have been drawn through the 

robust bivariate centroid. 

Definition. We call "inner region" the one formed by those units which lie inside 
or at the boundary of the B-spline curve superimposed on the 50%-hull. 

As an illustration of our method we use the data plotted in Fig. 1 (data available 
on request). On the x axis we have the percentage of infant population (<10yr  old) 
of the 341 municipalities of Emilia-Romagna (a region in the north of Italy). On the 
y axis we have the percentage of one-component families. The bulk of the data, as 
expected, shows a negative correlation. However, there are many points which seem 
to depart from an imaginary robust regression line that one could draw through the 
distribution of the data. Fig. 1 also gives the most extreme hull, the 90%-hull and 
the 50%-hull. On the 50%-hull we have superimposed a B-spline curve. This inner 
region is surely free from outliers and robust, but at the same time it keeps the 
correlation in the data and it allows for different spreads in the various directions. 

Step 2: Definition of the robust centroid. A robust bivariate centre can be found 
as the centre of  the innermost hull, or from a simple robust criterion such as the min- 
imization of  the Ll-norm in R 2 (see Small (1990) for a survey on multidimensional 
medians) or through the intersection of two robust regression lines (for example least 
median of squares lines (Rousseeuw and Leroy, 1987)). Another viable possibility is 
the use of Tukey's halfspace median, which is the point with largest halfspace depth 
(Tukey, 1975). For computational details, see Rousseeuw and Ruts (1996, 1997). 

Our suggestion is to find a robust bivariate centroid using the arithmetic means 
of the observations inside the inner region. In this way we exploit both the effi- 
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Fig. 2. Bivariate boxplot of the data reported in Fig. l. 

¢iency properties of the arithmetic mean and the natural trimming offered by the 
hulls. In Fig. 1 we have also drawn the two straight lines parallel to the Cartesian 
axes which intersect this bivariate robust centroid. Another viable alternative consists 
in using the intersection of  the two least squares lines built with the observations 
forming the inner region. This latter approach, which has the advantage of taking 
into account the relation between the two variables, will be explored in subsequent 
work. 

Step 3: Definition of the outer region. Once we have found a robust bivariate 
centre and a curve containing half of the data (hinge) we must devise a criterion 
in order to build an outer contour which discriminates between "good" and "bad" 
observations. 

In the traditional univariate boxplot we define as outliers those observations which 
lie outside the following interval: [x0.25 - 1.5 × IR, xo.75 + 1.5 x IR] where IR is the 
interquartile range (IR =x0.75 -x0.25). As is well-known, if the data come from the 
normal distribution, the former interval contains 99.3% of the values. 

In two dimensions, in order to allow a degree of asymmetry, we suggest to build a 
bivariate outer contour using a multiple of the distance of the hinge from the robust 
centre. The purpose is to find a contour which leaves outside the (small) proportion 
of the data which can be considered as atypical. Furthermore, under the hypothesis of 
bivariate normality, this contour can be interpreted as a probability contour at (1 - ~ )  
level with very small 0c (say close to 0.01). Lastly this contour is robust to departures 
from normality. In the appendix we show that in a bivariate normal distribution, in 
order to find an outer contour which leaves outside a percentage of observations 
close to 1%, we must multiply the distance of the hinge to the robust centre by 
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1.58. This coefficient (which we call 1) is independent of the correlation parameter 
p of the bivariate normal distribution (see the Appendix). In one dimension this 
would correspond to the separate use of the distances between the upper or lower 
quartile and the median in order to compute the upper or lower truncation points 
(Lanska and Kryscio, 1996). Using this coefficient we obtained the outer region 
plotted in Fig. 2. 

The graph clearly shows that the shape of the outer region (which is completely 
nonparametric and smooth) adapts to the differing spread of the data in the different 
directions. 

In this section we have constructed a bivariate boxplot starting from an inner 
region containing not more than 50% of the data. Of course nothing prevents us 
from using an inner region based on a larger proportion of the data (say 75%). In 
this case the method follows the same lines with the only difference that we must 
use a different coefficient l to build the outer contour (see the Appendix). 

The program to build our bivariate boxplot was developed under S-Plus ver- 
sion 3.2. Aware of the inefficiency of S-Plus in providing fast-loop algorithms, all 
functions which require heavy looping or multiple nested cycles, like the computa- 
tion of B-spline coefficients, were developed under pure C. While many simulations 
on large datasets could be time consuming (i.e.: 1000 simulations with 1000 obser- 
vations each, require a little less than an hour on an Intel-Pentium 150 (R)-based 
machine with 32 MB Ram) computing hulls, B-splines and outliers on a single dataset 
of 1000 observations is nearly instantaneous (2-3 s). Upon request the authors will 
provide the C and S-plus source code. 

3. Comparison with existing methods 

In order to find a robust inner region Rousseeuw (1984) suggested to find the 
ellipse with the smallest area (or more generally with p-dimensional data the min- 
imum volume ellipsoid) containing half of the observations. However, the ellipse 
does not allow differing spread in the different directions of the data. For example as 
emerges clearly from Fig. 1, the spread of the data from the robust centroid is not 
symmetric. Consequently a robust confidence ellipse does not seem to be appropriate. 

GI, in order to allow for different variability in various directions, use 4 quarter 
ellipses (quels) matched on the minor and major axes. This procedure, which has the 
purpose of giving an additional degree of asymmetry, is based on bivariate biweight 
estimators and is computationally cumbersome. 

More precisely fiI suggest two methods for the construction of the bivariate box- 
plot: the first is based on a robust elliptic plot (Relplot) the second on 4 quarter 
separate ellipses (Quelplot). To draw a Relplot one needs two robust estimators of 
location T~ and Ty; the ratio between the two estimators of scale Sx, Sy, one estimator 
of the correlation R and a constant which regulates the distance of the fence from 
the hinge. 

To draw a Quelplot one needs two additional parameters P~ and P2 which are 
the proportions of the total standard deviation due to the residuals in the positive 
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direction of the major and minor axes of  the ellipse. Globally, therefore, 6 quantities 
must be estimated. 

In our method we simply need a robust estimate of  the bivariate centroid. The 
contour of  our hinge is (a) robust, (b) completely nonparametric, being constructed 
by a spline superimposed on the 50% hull which does not require the estimation 
of  parameters, (c) has a sufficient degree of smoothness and (d) is not necessarily 
symmetric. 

GI in order to draw the fence use the "single nonoutlying point farthest from 
the centre". This means that we can always find one observation which lies on the 
threshold which declares one unit as outlier. Therefore, with small sample sizes the 
confidence region can vary considerably if we move the coordinates of  a point which 
lies on the fence. 

4. Simulation results 

The B-spline which is superimposed on the 50%-hull always lies inside it. There- 
fore the theoretical coefficient we find is based on a region that may contain a little 
less than 50% of  the data. This means that we expect that in a bivariate normal 
distribution the percentage of  data which lie outside the outer contour is a little bit 
greater than 1% when we use l = 1.58. Table 1 reports the results of  5 simulations 
for the following 5 values of p: p=0.1,0.3,0.5,0.7,0.9. Of course, we can suppose 
without loss of  generality that the standard deviations of  the two variables are equal 
to 1 and the true means are equal to 0, because convex hull peeling is invariant under 
linear transformations of the data (Donoho and Gasko, 1982; Ruts and Rousseeuw, 
1996). From the results of  Table 1 it emerges that when the sample size is equal to 
1000 the average Monte-Carlo percentage of  observations which lie outside of  the 
outer region is around 1.29%. 

Another issue to examine is the percentage of  observations outside the outer con- 
tour (outside rate per observation) for different values of  the sample size (n). The 
sample sizes we considered are: 50, 100, 200, 400, 500, 800 and 1000. As is well- 
known (Hoaglin et al., 1986; Goldberg and Iglewicz, 1992), the outside rate per 
observation is a decreasing function of  n. From the results of  Fig. 3, which reports 
the outside rate per observation for different values of n, it emerges that we expe- 
rience the same decreasing pattern. The coefficient ( l)  which asymptotically enables 

Table 1 
Monte Carlo average number of  observations (th) outside 
the outer contour using l = 1.58 (1000 simulations of  1000 
units each) 

P 

0.1 
0.3 
0.5 
0.7 
0.9 

12.892 
13.004 
12.763 
12.681 
12.428 
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Fig. 3. Outside rate per observation (in percent) versus sample size. Simulated estimates from bivariate 
Gaussian samples with p = 0.5. The upper line is referred to the 1% theoretical coefficient (1 = 1.58), 

the lower line to l = 1.68 (empirical coefficient). 

us to have an outside rate per observation of  1% is 1.68. In the examples of  the 
next section we use this value to draw the fence. 

The coefficients corresponding to asymptotic outside rates per observation of  10% 
and 5%, are 0.86 and 1.13, which are a little bit bigger than the theoretical coefficients 
of  0.82 and 1.08 (see the Appendix). 

5. Examples 

Our method is directed in a particular way towards big data sets. When the sample 
size is very small (n < 20) it might happen that the 50%-hull contains far fewer points 
than 50% of  the data points, and hence no longer represents the shape of  the bulk 
of  the data. In this section however, we show that our bivariate boxplot seems to 
work well also for small sample sizes. The first bivariate data we consider concerns 
Log light intensity versus Log effective surface temperature for the 47 stars of  the 
star cluster CYG OB1 (Rousseeuw and Leroy, 1987, pp. 27-28). This example has 
also been used by GI because in this case an elliptic plot based on least squares 
estimators distorts the data structure. GI identify five stars as clear outliers. In their 
Relplot, observation 14 lies a little outside the fence and unit 9 is used to build the 
outer contour. Therefore it is forced to lie on it. In their Quelplot, observation 14 
lies on the boundary and unit 9 falls inside the outer contour. Fig. 4 reports our 
bivariate boxplot and shows that even when the sample size is small our method 
clearly enables us to identify correctly the structure of  the data. Similar to GI, units 
34, 30, 20, 11 and 7 are clearly recognized as outliers. In our approach no unit is 
forced to lie on the outer contour and, while observation 14 falls outside, unit 9 
remains inside. 

The second data set we consider is known in the literature as the Brain and Body 
weight data and concerns the Log of  the weights of  body and brain for 28 species 
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Fig. 4. Bivariate boxplot of Log light intensity and Log effective surface temperature for the 47 stars 
of the star cluster CYG OB1. 
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Fig. 5. Bivariate boxplot of Log brain weight and Log body weight (Observations detected as outliers 
are identified with their number). 
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(the raw data can be found in Rousseeuw and Leroy (1987, p. 58)). Fig. 5 shows 
that the majority of the data follow a clear pattern with some exceptions on the lower 
fight region and on the upper part of  the plot. Rousseeuw and Van Zomeren (1990) 
build the minimum volume ellipsoid and detect observations 6, 16,25, 14 and 17 as 
outliers. Observation 24 lies on the boundary of their 97.5% tolerance ellipse. As is 
clearly shown in Fig. 5, our outer region enables us to detect the 5 atypical obser- 
vations formerly identified. A difference from Rousseeuw and Van Zomeren (1990) 
is that our bivariate boxplot observation 24 lies a little outside the outer region. 

Remark. It follows from the analysis of the outside rate per observation that, when 
the sample size is small, we expect that the percentage of observations which lie 
outside the outer region is larger than 1%. However, in order to be conservative, we 
always suggest using the coefficient 1.68. 

6. Bivariate and multivariate outliers 

The focus of this paper concerns bivariate data and the detection of bivariate 
outliers. However the analysis of  atypical bivariate observations can offer us a good 
starting point for the detection of multivariate outliers. The modern procedure of 
detecting atypical p-dimensional observations is based on the following two steps 
(e.g. Hadi, 1992, 1994): 

(1) definition of a clean data set (initial or basic subset) free from outliers of 
dimension p + 1; 

(2) iterative inclusion of units in the clean data set until a stopping rule is satisfied. 
One problem is the choice of the clean data set with which to start the forward 

iterative inclusion. For example Atldnson (1994), in order to avoid this choice, sug- 
gested to extract a subset of observations at random and to repeat the forward search 
several times. 

With p dimensional data the construction of bivariate boxplots for each couple of 
variables enables us to define as "bivariate clean data sets" the subsets containing 
the units inside the 1 - g outer contours. In this paper we have constructed a bi- 
variate boxplot with an outer region which, in the presence of bivariate normality, 
leaves outside a percentage of  observations close to 1%. This threshold however can 
conveniently be decreased in order to increase the probability that the initial clean 
data set is free from outliers. In large samples we suggest to use 90% outer regions 
in each scatter plot. In small samples 75% outer regions might be a proper choice. 

A natural definition of the multivariate initial subset (or basic subset) is the fol- 
lowing (Riani and Zani, 1996): 

Definition. We call the initial subset of multivariate clean observations the one 
formed by the intersection of the subsets of bivariate clean data in each of the 
p ( p -  1)/2 pairs of variables. 

The observations which lie at least once outside the outer contour can be consid- 
ered as potential outliers and can be removed from the basic subset. 
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Fig. 6. Scatter plot matrix of  three demographic variables and bivariate boxplots with 90% outer 
contours. 

Usually outliers form a small part of the overall sample. Therefore it is not sensible 
to start the forward search with a clean data set of dimension p + 1 especially when 
the sample size is large. The former criterion enables us to start with a basic subset 
of  a certain dimension• This provides computational savings and simplifications in 
the analysis of potential outliers. 

Of course one observation which is a multivariate outlier might always lie at the 
boundary of the bivariate confidence regions without ever falling outside. In the 
rare event that the basic subset contained some atypical observations they could be 
immediately detected with a forward search in which units can leave the basic subset 
(Hadi and Simonoff, 1993; Atldnson, 1994; Atkinson and Riani, 1997). 

As an illustration of the suggested method for the detection of multivariate outliers, 
let us suppose that the data reported in Fig. 1 belong to a three-dimensional data set 
in which the third variable is an ageing index. Fig. 6 shows the bivariate boxplots 
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for each pair of  variables. In order to be conservative we have used the coefficient 
0.82 which has a theoretical outside rate per observation equal to 0.10. All the units 
marked with a number are excluded from the initial clean data set. Initial Mahalanobis 
distances are calculated using a centroid based on the statistical units forming the 
basic subset. Observations belonging to the group of  potential outliers are iteratively 
included in the initial subset. Results can be displayed through simple graphs of  a 
variety of  statistics monitored along the forward search algorithm (Riani and Zani, 
1996; Atkinson and Riani, 1997). 

7. Conclusions 

In this paper we have suggested a simple and transparent method to construct a 
bivariate boxplot based on convex hull peeling and B-spline smoothing. These tools 
lead us to define a natural inner region (hinge) which is completely nonparametric 
and smooth. Furthermore it keeps the correlation in the observations and it adapts to 
the different spread of  the data in the different directions. The outer region (fence), 
which is based on a multiple of  the distance of  the points lying on the hinge to the 
centre, is robust to the presence of  clusters of  outliers. In addition, under the hy- 
pothesis of  bivariate normality, the fence can be interpreted as a bivariate confidence 
contour at the 99% level. 

The proposed method has been applied with success to some well-known data sets 
formerly analysed in the literature concerning atypical values. 

The focus of  the paper is mainly directed to bivariate outliers. For p-dimensional 
data, however, the construction of  a bivariate boxplot for each pair of variables can 
be a very useful tool for defining an initial clean data set, which can then act as a 
starting point in the usual forward search techniques for the detection of multivariate 
outliers. 

Appendix 

Let O be the origin of  the cartesian axes and OA = k0.s be the distance of  a point A 
from the centre O which lies on the ellipse of  a bivariate standard normal distribution 
associated with a constant probability density contour of  0.50. Let OB = ko.99 be the 
distance of  a point B from O which lies on the ellipse associated with a probability 
density contour of  0.99. Segment OB is such that it intersects point A (Fig. 7). 

In this appendix we prove that the probability that an observation lies inside the 
ellipse which intersects the point which has a distance from the centre equal to 
OB = OA + IOA is approximately equal to 0.99 when l = 1.58. 

Suppose initially that p = 0. In order to compute the radius OA of the circle which 
contains 50% of  the values we must solve the following bivariate integral: 

/ f{z 1 exp{ l(z 2 + z2)} C1Z1 dz 2 =0.5. 
,z2: z?+z~_<~ 2) 2~ 
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Fig. 7. Ellipses associated with two density probability contours in a bivariate standard normal 
distribution. 

Passing to polar coordinates we have 

b-2 

fo rexp{-½r2Idr=0"5" 

Notice that after the change of  variables r 2 = x the expression under the integral sign 
can be immediately recognized as X 2 with 2 degrees of  freedom. We find OA = 1.177. 

If we want the radius OB corresponding to 0.99 we easily obtain that OB = 3.03485. 
If  p ~ 0 it is easy to prove that the quadratic form in the exponent of  the bivariate 

normal distribution (Xl,Xl) after a rotation in which the new coordinates of  the 
cartesian axes pass through the axes of  the ellipse, can be written as follows: 

+ -kf_  
l + p  1 - p  

where k~_, is the coefficient associated with the ellipse containing a fraction (1 - ~ )  
of  the values. The distance of  a point which lies on this ellipse from the centre 0 
which intersects the straight line (y  = rex) where m denotes a generic slope is: 

~ k2~(1 - p2)(1 -F m 2) 
(A.I) 
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Table 2 
Theoretical (It) VerSlLS empirical (le) coefficients associ- 
ated with different probability contours in a standard nor- 
mal distribution 

Prob. It le 

0.99 1.58 1.68 
0.95 1.08 1.13 
0.90 0.82 0.86 
0.75 0.41 0.43 

The coefficient l which enables one to pass from the hinge to the outer contour must 
satisfy the following equation: 

t = ( O B - O A ) / O A .  

Given that from every point p and m are fixed, from Eq. (A.1) we have 

t = (k2 - k , ) / k l .  ( A . 2 )  

This means that even i f  the distance OA depends on p and from the position o f  the 
point on the ellipse the coefficient l is independent o f  both. Consequently we can 
argue supposing p = 0. Substituting in Eq. (A.2) k2 = 3.03485 and kl = 1.177 we find 
l = 1.58. 

In Table 2 we give the theoretical and empirical coefficients which enable us to 
pass from our inner region defined in Section 2, to an outer contour containing 
asymptotically 75%, 90%, 95% or 99% of  the observations in a bivariate normal 
distribution. 
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